reforef.ru 1 2 3

Многоатомные спирты, их строение и свойства.
Представители многоатомных спиртов — этиленгликоль и глицерин. Двухатомные спирты, содержащие две гидроксильные группы—ОН, называются гликолями, или диолами, трехатомные спирты, содержащие три гидроксильные группы, — глицеринами, или триолами.

Положение гидроксильных групп указывается цифрами в конце названия.


Физические свойства
Многоатомные спирты — бесцветные сиропообразные жидкости сладковатого вкуса, хорошо растворимы в воде, плохо — в органических растворителях; имеют высокие температуры кипения. Например, tкип этиленгликоля 198°С, плотность () 1,11 г/см3; tкип (глицерин) = 290°С, глицерин = 1,26 г/см3.
Получение
Двух- и трехатомные спирты получают теми же способами, что и одноатомные. В качестве исходных соединений могут быть использованы алкены, галогенопроизводные и другие соединения.

1. Этиленгликоль (этандиол-1,2) синтезируют из этилена различными способами:


3CH2=CH2 + 2KMnO4 + 4H2O ® 3HO–CH2–CH2–OH + 2MnO2 + 2KOH


2. Глицерин (пропантриол -1,2,3) получают из жиров, а также синтетическим путем из газов крекинга нефти (пропилена), т.е. из непищевого сырья.


Химические свойства
Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эффектом. Поэтому многоатомные спирты, в отличие от одноатомных, реагируют со щелочами, образуя соли. Например, этиленгликоль реагирует не только с щелочными металлами, но и с гидроксидами тяжелых металлов.


По аналогии с алкоголятами соли двухатомных спиртов называются гликолятами, а трехатомных — глицератами.

При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:


Вторая гидроксогруппа замещается труднее, под действием РСl5.

При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение ярко-синего цвета.
Эта реакция используется для обнаружения многоатомных спиртов, имеющих гидроксильные группы при соседних атомах углерода -СH(ОН)-СН(ОН)-:


В отсутствие щелочи многоатомные спирты не реагируют с |гидроксидом меди (II) — их кислотность для этого недостаточна.

Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры (см. §7). При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):


Для спиртов характерны реакции, в результате которых образуются циклические структуры:


Применение
Этиленгликоль используется главным образом для производства лавсана и для приготовления антифризов — водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время).

Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканей и в других областях народного хозяйства. Наиболее важной областью применения глицерина является производство тринитрата глицерина (неверно называемого нитроглицерином) — это сильное взрывчатое вещество, которое взрывается от удара, а также лекарство (сосудорасширяющее средство). Сорбит (шестиатомный спирт) используется как заменитель сахара для больных диабетом.


Тест № 4.

Свойства многоатомных спиртов

1. С какими из перечисленных ниже веществ будет реагировать глицерин?

1) HBr 2) HNO3 3) H2 4) H2O 5)Cu(OH) 2 6) Ag2O/NH3
2. Глицерин не реагирует с 1)HNO3 2)NaOH 3)CH3COOH 4)Cu(OH)2

3. Этиленгликоль не реагирует с 1)HNO3 2)NaOH 3)CH3COOH 4)Cu(OH)2

4. Со свежеосажденным гидроксидом меди (II) не будет взаимодействовать: 1) глицерин;

2) бутанон 3) пропаналь 4) пропандиол-1,2

5. Свежеприготовленный осадок Сu(ОН)2 растворится, если к нему добавить

1)пропандиол-1,2 2)пропанол-1 3) пропен4)пропанол-2

6. Глицерин в водном растворе можно обнаружить с помощью

1) хлорной извести 2) хлорида железа (III) 3) гидроксида меди (II) 4) гидроксида натрия

7. Какой из спиртов реагирует с гидроксидом меди (II)?

1)СН3ОН 2) СН3СН2ОН 3) С6Н5ОН 4)НО-СН2СН2-ОН

8. Характерной реакцией для многоатомных спиртов является взаимодействие с

1) H2 2) Сu 3) Ag2O (NH3 р-р) 4) Cu(OH)2

9. Вещество, реагирующее с Na и Cu(OH)2 – это:

1) фенол; 2) одноатомный спирт; 3) многоатомный спирт 4) алкен

10. Этандиол-1,2 может реагировать с

1) гидроксидом меди (II)

2) оксидом железа (II)

3) хлороводородом

4)водородом

5) калием

6) фосфором

Лекция № 4.

Фенолы, их строение. Свойства фенола, взаимное влияние атомов в молекуле фенола. Орто-, паро-ориентирующее действие гидроксильной группы. Получение и применение фенола

ФЕНОЛЫ – класс органических соединений. Содержат одну или несколько группировок С–ОН, при этом атом углерода входит в состав ароматического (например, бензольного) кольца.

Классификация фенолов. Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ
В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ
Номенклатура фенолов

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто-, мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы, входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).


Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ. Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.
Химические свойства фенолов

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.



Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ
В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.
1. Обладает слабыми кислотными свойствами, при действии щелочей образует соли — феноляты (например, фенолят натрия - C6H5ONa):

C6H5OH + NaOH = C6H5ONa + H2O

Вступает в реакции электрофильного замещения по ароматическому кольцу. Гидрокси-группа, являясь одной из самых сильных донорных групп, увеличивает реакционную способность кольца к этим реакциям, и направляет замещение в орто- и пара-положения. Фенол с лёгкостью алкилируется, ацилируется, галогенируется, нитруется и сульфируется.

Реакция Кольбе-Шмидта.

2. Взаимодействие с металлическим натрием:
C6H5OH + Na = C6H5ONa + H2
3. Взаимодействие с бромной водой (качественная реакция на фенол):
C6H5OH + 3Br2(водн.) → C6H2(Br)3OH + 3HBr образуется 2,4,6 трибромфенол
4. Взаимодействие с концентрированной азотной кислотой:
C6H5OH + 3HNO3конц → C6H2(NO2)3OH + 3H2О образуется 2,4,6 тринитрофенол

5. Взаимодействие с хлоридом железа (III)(качественная реакция на фенол):
C6H5OH + FeCl3 → [C6H5OFe]2+(Cl)2- + HCl образуется дихлоридфенолят железа (III)(фиолетовое окрашивание)

Способы получения фенолов.


Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С6Н5ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H2SO4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).


Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА
Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара-дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.
Тест № 5 Фенолы

1. Сколько существует фенолов состава С7Н8О? 1)Один 2) Четыре 3) Три 4) два

2. Атом кислорода в молекуле фенола образует

1) одну σ-связь 2) две σ-связи 3) одну σ- и одну π-связи 4) две π-связи

3. Фенолы — более сильные кислоты, чем алифатические спирты потому, что ...


1) между молекулами спирта образуется прочная водо­родная связь

2) в молекуле фенола больше массовая доля ионов водо­рода

3) в фенолах электронная система смещена в сторону атома кислорода, что приводит к большей подвижно­сти атомов водорода бензольного кольца

4) в фенолах электронная плотность связи О-Н умень­шается из-за взаимодействия неподеленной электрон­ной пары атома кислорода с бензольным кольцом

4. Выберите верное утверждение:

1) фенолы диссоциируют в большей степени, чем спирты;

2) фенолы проявляют основные свойства;

3) фенолы и их производные не обладают токсическим действием;

4) атом водорода в гидроксильной группе фенола не может быть замещен на катион металла под действием оснований.
Свойства

5. Фенол в водном растворе является

1) сильной кислотой 2) слабой кислотой 3) слабым основанием 4) сильным основанием

1. Вещество, реагирующее с Na и NaOH, дающее фиолетовое окрашивание с FeCl3 – это:

1) фенол; 2) спирт 3) простой эфир; 4) алкан

6. Влияние бензольного кольца на гидроксильную группу в молекуле фенола доказывает реакция фенола с

1) гидроксидом натрия 2) формальдегидом 3) бромной водой 4) азотной кислотой

7. Химическое взаимодействие возможно между веществами, формулы которых:

1) С6Н5OH и NaCl 2) С6Н5OH и HCl 3) С6Н5OH и NaOH 4) С6Н5ONa и NaOH.

8. Фенол не взаимодействует с

1) метаналем 2) метаном 3) азотной кислотой 4) бромной водой

9. Фенол взаимодействует c

1) соляной кислотой 2) этиленом 3) гидроксидом натрия 4) метаном

10. Фенол не взаимодействует с веществом, формула которого

1)HBr 2)Br2 3)HNO3 4)NaOH

11. Фенол не реагирует с 1) НNO3 2) KОН 3) Вr2 4) Сu(OH)2


12. Кислотные свойства наиболее выражены у 1)фенола 2)метанола 3)этанола 4)глицерина

13. При взаимодействии фенола с натрием образуются

1) фенолят натрия и вода 2) фенолят натрия и водород

3) бензол и гидроксид натрия 4) бензоат натрия и водород

14. Установите соответствие между исходными веществами и продуктами, которые преимущественно образуются при их взаимодействии.

ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ

А) С6Н5ОН + К 1) 2,4,6-трибромфенол + НВr

Б) С6Н5ОН + КОН 2) 3,5-дибромфенол + НВr

В) С6Н5ОН + НNО3 3) фенолят калия + Н2

Г) С6Н5ОН + Вr2 (р-р) 4) 2,4,6-тринитрофенол + H2O

5) 3,5-динитрофенол + НNO3

6) фенолят калия + Н2О

15. Установите соответствие между исходными веще­ствами и продуктами реакции.

ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ РЕАКЦИИ

А) С6Н5ОН + Н2 1) С6Н6+ Н2О

Б) С6Н5ОН + К 2) С6Н5ОК + Н2О

В) С6Н5ОН + КОН 3) С6Н5ОН + КНСО3

Г) С6Н5ОК + Н2О + СО2 4) С6Н11ОН

5) С6Н5ОК + Н2

6) С6Н5СООН + КОН

16. Фенол взаимодействует с растворами

1) Сu(ОН)2

2) Н2SO4

3) [Аg(NH3)2]OH

4) FеСl3

5) Вr2

6) КОН

17. Фенол реагирует с

1) кислородом

2)бензолом

3) гидроксидом натрия

4) хлороводородом

5) натрием

6) оксидом кремния (IV)

Получение

18. При замещении водорода в ароматическом кольце на гидроксильную группу образуется:

1) сложный эфир; 2) простой эфир; 3) предельный спирт; 4) фенол.

19. Фенол может быть получен в реакции

1) дегидратации бензойной кислоты 2) гидрирования бензальдегида

3) гидратации стирола 4) хлорбензола с гидроксидом калия
Взаимосвязь, качественные реакции.

20. Метанол. этиленгликоль и глицерин являются:

1)гомологами; 2)первичным, вторичным и третичным спиртами;

32)изомерами; 4) одноатомным, двухатомным, трехатомным спиртами

21. Вещество, не реагирующее ни с Na, ни с NaOH, получаемое при межмолекулярной дегидратации спиртов - это: 1) фенол 2) спирт 3) простой эфир; 4) алкен

22.Взаимодействуют между собой

1)этанол и водород 2)уксусная кислота и хлор

3)фенол и оксид меди (II) 4)этиленгликоль и хлорид натрия

23.Вещество Х может реагировать с фенолом, но не реагирует с этанолом. Это вещество:

1)Na 2) O2 3)HNO3 4)бромная вода

24. Ярко-синий раствор образуется при взаимодейст­вии гидроксида меди (II) с

1)этанолом 2) глицерином 3) этаналем 4) толуолом

25. Гидроксид меди (II) может быть использован для обнаружения

1) ионов Аl3+ 2)этанола 3) ионов NO3- 4) этиленгликоля

26. В схеме превращений C6H12O6 à X à C2H5-O- C2H5 веществом «Х» является

1) C2H5OH 2) C2H5COOH 3) CH3COOH 4) C6H11OH

27.В схеме превращений этанол à Хà бутан веществом Х является

1)бутанол-1 2)бромэтан 3)этан 4)этилен

28. В схеме превращений пропанол-1à Х à пропанол-2 веществом Х является


1) 2-хлорпропан 2) пропановая кислота 3) пропин 4) пропен

29.Водные растворы этанола и глицерина можно различить с помощью:

1)бромной воды 2)аммиачного раствора оксида серебра

4) металлического натрия 3)свежеприготовленного осадка гидроксида меди (II);

30. Отличить этанол от этиленгликоля можно с помощью:

1) натрия; 2) NaOH; 3) Cu(OH)2 4) FeCl3

31. Отличить фенол от метанола можно с помощью:

1) натрия; 2) NaOH; 3) Cu(OH)2 4) FeCl3

32. Отличить фенол от простого эфира можно с помощью:

1) Cl2 2) NaOH 3) Cu(OH)2 4) FeCl3

33. Отличить глицерин от пропанола-1 можно с помощью:

1) натрия 2)NaOH 3) Cu(OH)2 4) FeCl3

34. Какое вещество надо использовать для того, чтобы в ла­бораторных условиях отличить друг от друга этанол и этиленгликоль?

1) Натрий 2) Соляную кислоту 3) Гидроксид меди (II) 4) Гидроксид натрия


<< предыдущая страница