reforef.ru 1
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Биологический факультет

«Мир РНК». Свойства РНК, отвечающие требованиям первых молекул жизни. Модель возникновения аппарата биосинтеза белка (по А.С. Спирину).

Подготовила:

студентка 4 курса 2 группы

Стрельцова Д. Е.

Минск, 2010

Структура РНК.

Обе нуклеиновые кислоты – ДНК и РНК – были открыты швейцарским биохимиком Фридрихом Мишером в 1869 году, задолго до выяснения их роли в передаче наследствен ной информации. А наиболее полную информацию об их химическом строении получил Фабус Арон Теодор Левин (1869-1940), американский ученый, родившийся в России и получивший образование в Петербурге.

Нуклеиновые кислоты синтезируются в клетке из нуклеотидов - комплексов азотистого основания, сахара и остатков фосфорной кислоты, служащих универсальными блоками для построения ДНК и РНК. Существуют пять видов азотистых оснований – аденин, тимин, гуанин, цитозин и урацил [5].

РНК – крупные макромолекулы, каждая из которых представляет собой одну ковалентно-непрерывную полинуклеотидную цепь. В совокупности исследования физико-химических свойств и структурных характеристик изолированных высокополимерных РНК в растворе, выполненные в 1958-1962 гг., привели к формулированию следующих общих принципов их пространственной организации:

• РНК, в отличие от ДНК, – одноцепочечный полимер,

• РНК формирует вторичную структуру – набор коротких спиральных участков – в основном за счет антипараллельного комплементарного спаривания смежных отрезков цепи;

• РНК способна образовывать третичную структуру за счет дальних комплементарных взаимодействий внутри цепи и межспиральных взаимодействий;

• высокополимерная РНК способна сворачиваться в компактные частицы;

• РНК обладает значительной конформационной подвижностью.

Способность РНК к формированию компактных трехмерных структур, как и в случае белков, дает основу для специфического взаимодействия с другими молекулами – макромолекулами и малыми лигандами. Для молекул РНК, свернутых в специфическую глобулу, благодаря чему на ее поверхности создается уникальный пространственный узор, приходится допустить возможность функции молекулярного узнавания, как и у белков. В свою очередь, высокоизбирательное узнавание приводит к возможности специфического катализа химических реакций на манер ферментативного катализа реакций белками.


Окончательное признание за РНК способности узнавать самые разнообразные молекулы и весьма специфично взаимодействовать с ними пришло благодаря аптамерам – небольшим по размерам синтетическим РНК, получаемым путем отбора из многих вариантов нуклеотидных последовательностей с помощью процедур так называемой «бесклеточной эволюции», «эволюции в пробирке». Оказалось, что можно отобрать и размножить РНК, обладающие способностью избирательно связывать практически любой вид молекул, начиная от низкомолекулярных органических соединений и кончая различными индивидуальными пептидами и белками. Другими словами, РНК, как и белки, действительно в полной мере могут обладать функцией специфического молекулярного узнавания [3].

Функции РНК.

Суммирование и обзор знаний о функциях РНК позволяют говорить о необыкновенной многофункциональности этого полимера в живой природе. Можно дать следующий список основных известных функций РНК:


  1. генетическая репликативная функция: структурная возможность копирования (репликации) линейных последовательностей нуклеотидов через комплементарные последовательности. Функция реализуется при вирусных инфекциях и аналогична главной функции ДНК в жизнедеятельности клеточных организмов – редупликации генетического материала.

  2. кодирующая функция: программирование белкового синтеза линейными последовательностями нуклеотидов. Это та же функция, что и у ДНК. И в ДНК, и в РНК одни и те же триплеты нуклеотидов кодируют 20 аминокислот белков, и последовательность триплетов в цепи нуклеиновой кислоты есть программа для последовательной расстановки 20 видов аминокислот в полипептидной цепи белка.

  3. структурообразующая функция: формирование уникальных трехмерных структур. Компактно свернутые молекулы малых РНК принципиально подобны трехмерным структурам глобулярных белков, а более длинные молекулы РНК могут образовывать и более крупные биологические частицы или их ядра.

  4. функция узнавания: высокоспецифические пространственные взаимодействия с другими макромолекулами (в том числе белками и другими РНК) и с малыми лигандами. Эта функция, пожалуй, главная у белков. Она основана на способности полимера сворачиваться уникальным образом и формировать специфические трехмерные структуры. Функция узнавания является базой специфического катализа.


  5. каталитическая функция: специфический катализ химических реакций рибозимами. Данная функция аналогична энзиматической функции белков-ферментов.

Как можно видеть, РНК способна выполнять функции обоих принципиально важных для жизни полимеров – ДНК и белков. Неудивительно, что перед наукой и встал вопрос: а не могло ли возникновение и самодостаточное существование мира РНК предшествовать появлению жизни в ее современной ДНК-белковой форме [2]?
Мир РНК и эволюция в пробирке

Метод полимеразной цепной реакции (ПЦР), который позволяет размножать нуклеиновые кислоты в неограниченных количествах. Кратко опишем суть метода. Для размножения ДНК в методе ПЦР используются ферменты ДНК-полимеразы, т. е. те самые ферменты, которые при размножении клеток синтезируют из активированных мономеров-нуклеотидов комплементарные цепочки ДНК.

При методе ПЦР в пробирку с ДНК вносят смесь активированных нуклеотидов, фермент ДНК-полимеразу и так называемые праймеры –олигонуклеотиды, комплементарные концам размножаемой ДНК. При нагревании раствора цепи ДНК расходятся. Затем, при охлаждении, с ними связываются праймеры, образуя короткие фрагменты спиральных структур. Фермент присоединяет к праймерам нуклеотиды и собирает цепочку, комплементарную цепочке исходной ДНК. В результате реакции из одной двухцепочечной ДНК получается две.

Изобретение ПЦР и разработка методов химического синтеза ДНК позволили создать потрясающую технологию молекулярной селекции. Принцип молекулярной селекции тоже прост: сначала синтезируется множество молекул, обладающих разными свойствами (так называемая молекулярная библиотека), а затем из этой смеси отбираются молекулы с желаемым свойством.


Библиотеки нуклеиновых кислот – это смеси молекул, имеющих одинаковую длину, но отличающиеся последовательностью нуклеотидов. Так как в зависимости от состава нуклеиновые кислоты сворачиваются в разные пространственные структуры, синтез статистических последовательностей дает огромное множество молекул, различающихся по свойствам. С образовавшихся ДНК – с помощью фермента РНК-полимеразы – считывается РНК. В результате получается библиотека уже одноцепочечных РНК. Далее производится процедура отбора: раствор РНК пропускается через колонку, в которой находится нерастворимый носитель с химически присоединенными молекулами-мишенями, чтобы «выловить» так называемый будущий аптамер, т. е. вещество, способное связывать определенные молекулы. Затем колонку промывают для удаления несвязавшихся РНК, и удаляют РНК, задержавшиеся на колонке за счет связывания с целевыми молекулами (это можно сделать, например, нагревая колонку).

С выделенных РНК делают ДНК-копии и получают из них обычные двуцепочеченые молекулы ДНК. С последних же можно считывать искомые РНК-аптамеры, а затем – размножать их методом ПЦР в неограниченных количествах.

С помощью такого метода были получены тысячи разных РНК-аптамеров, которые образуют специфические комплексы с различными органическими соединениями и молекулами.

Рассмотренная схема молекулярной селекции может быть применена для получения молекул с любыми свойствами. Например, были получены РНК, способные катализировать реакции синтеза РНК и белков: присоединение азотистых оснований к рибозе, полимеризацию активированных нуклеотидов на цепочках РНК, присоединение аминокислот к РНК. Эти исследования еще раз подтвердили, что в условиях предбиологической эволюции из случайных полимеров могли возникать молекулы РНК со специфическими структурами и функциями [1].
Мир РНК как предшественник современной жизни.

Согласно представлениям, сформировавшимся в 50–60 годы XX века, функции двух важнейших биополимеров – нуклеиновых кислот и белков – строго разграничены: за первыми закрепилась роль хранителя генетической информации, а каталитическая функция была приписана исключительно белкам. Значительно более плодотворной оказалась идея, высказанная К.Р. Вузом и несколько позже Л. Оргелем и окончательно сформулированная В. Гилбертом уже в 80-е годы. Согласно этой идее наличие каталитических функций у полинуклеотидов могло привести к формированию своеобразного «мира РНК» как основы эволюции первичной биосферы [4].


В начале 80-х годов прошлого века, в лабораториях Т. Чека и С. Олтмана в США было сделано сенсационное открытие, осуществившее революцию в биохимии и молекулярной биологии: было показано, что РНК может быть специфическим катализатором биохимических реакций. В течение всей предшествующей истории биохимии на протяжении десятилетий утверждалось, что биохимический катализ – «прерогатива» исключительно белков-ферментов. Поэтому и все теории происхождения жизни вынуждены были исходить из первичности белков как макромолекул, абсолютно необходимых для возникновения биохимического метаболизма (обмена веществ). Открытие каталитической функции РНК перевернуло все прежние представления об исключительной роли белков не только в возникновении жизни, но и в понимании самого явления жизни.

По аналогии с белками-ферментами – энзимами – каталитические РНК были названы рибозимами. По-видимому, почти все рибозимы, естественно существующие в живой природе в клетках современных организмов, так или иначе участвуют в процессах, связанных с превращениями полинуклеотидных цепей самих РНК.

Эти результаты не замедлили сказаться на теории происхождения жизни: «фаворитом» стала молекула РНК. В самом деле, была обнаружена молекула, способная нести генетическую информацию и вдобавок к этому катализировать химические реакции! Более подходящего кандидата для зарождения доклеточной жизни трудно было представить [3,5].

Итак, почему именно РНК, а не ДНК, могла представлять собой первичный генетический материал?

Во-первых, и в химическом синтезе, и в биохимических реакциях рибонуклеотиды предшествуют дезоксирибонуклеотидам; дезоксирибонуклеотиды – продукты модификации рибонуклеотидов (см. рис. 2).

Во-вторых, в самых древних, универсальных процессах жизненного метаболизма широко представлены именно рибонуклеотиды, а не дезоксирибонуклеотиды, включая основные энергетические носители типа рибонуклеозид-полифосфатов (АТФ и т.п.).

В-третьих, репликация РНК может происходить без какого бы то ни было участия ДНК, а механизм редупликации ДНК даже в современном живом мире требует обязательного участия РНК-затравки в инициации синтеза цепи ДНК.

В-четвертых, обладая всеми теми же матричными и генетическими функциями, что и ДНК, РНК способна также к выполнению ряда функций, присущих белкам, включая катализ химических реакций. Таким образом, имеются все основания рассматривать ДНК как более позднее эволюционное приобретение – как модификацию РНК, специализированную для выполнения функции воспроизведения и хранения уникальных копий генов в составе клеточного генома без непосредственного участия в биосинтезе белков.

Возможная схема возникновения мира РНК представлена на рис. 1.
 
Рис. 1. Схематическое представление пути происхождения жизни согласно современной концепции первичности мира РНК

Абиогенный синтез рибонуклеотидов и их ковалентное объединение в олигомеры и полимеры типа РНК могли происходить приблизительно в тех же условиях и в той же химической обстановке, что постулировались для образования аминокислот и полипептидов. Недавно А.Б. Четверин с сотрудниками (Институт белка РАН) экспериментально показали, что по крайней мере некоторые полирибонуклеотиды (РНК) в обычной водной среде способны к спонтанной рекомбинации, то есть обмену отрезками цепи, путем трансэстерификации. Обмен коротких отрезков цепи на длинные, должен приводить к удлинению полирибонуклеотидов (РНК), а сама подобная рекомбинация способствовать структурному многообразию этих молекул. Среди них могли возникать и каталитически активные молекулы РНК.

Даже крайне редкое появление единичных молекул РНК, которые были способны катализировать полимеризацию рибонуклеотидов или соединение (сплайсинг) олигонуклеотидов на комплементарной цепи как на матрице, означало становление механизма репликации РНК. Репликация самих РНК-катализаторов (рибозимов) должна была повлечь за собой возникновение самореплицирующихся популяций РНК. Продуцируя свои копии, РНК размножались. Неизбежные ошибки в копировании (мутации) и рекомбинации в самореплицирующихся популяциях РНК создавали все большее разнообразие этого мира. Таким образом, предполагаемый древний мир РНК – это «самодостаточный биологический мир, в котором молекулы РНК функционировали и как генетический материал, и как энзимоподобные катализаторы» [2].


Возникновение биосинтеза белка.

Далее на основе мира РНК должно было происходить становление механизмов биосинтеза белка, появление разнообразных белков с наследуемой структурой и свойствами, компартментализация систем биосинтеза белка и белковых наборов, возможно, в форме коацерватов (праорганизмов) и эволюция последних в клеточные структуры – живые клетки (см. рис. 1).

Проблема перехода от древнего мира РНК к современному белок-синтезирующему миру – наиболее трудная даже для чисто теоретического решения. Возможность абиогенного синтеза полипептидов и белковоподобных веществ не помогает в решении проблемы, так как не просматривается никакого конкретного пути, как этот синтез мог бы быть сопряжен с РНК и подпасть под генетический контроль. Генетически контролируемый синтез полипептидов и белков должен был развиваться независимо от первичного абиогенного синтеза, своим путем, на базе уже существовавшего мира РНК. В литературе предложено несколько гипотез происхождения современного механизма биосинтеза белка в мире РНК, но, пожалуй, ни одна из них не может рассматриваться как детально продуманная и безупречная с точки зрения физико-химических возможностей. Представлю свою версию процесса эволюции и специализации РНК, ведущего к возникновению аппарата биосинтеза белка (рис. 2), но и она не претендует на законченность.

Предлагаемая гипотетическая схема содержит два существенных момента, кажущихся принципиальными.

Во-первых, постулируется, что абиогенно синтезируемые олигорибонуклеотиды активно рекомбинировали посредством механизма спонтанной неэнзиматической трансэстерификации, приводя к образованию удлиненных цепей РНК и давая начало их многообразию. Именно этим путем в популяции олигонуклеотидов и полинуклеотидов и могли появиться как каталитически активные виды РНК (рибозимы), так и другие виды РНК Рис. 2. Схема эволюции и специализации молекул РНК в процессе перехода от древнего мира РНК к современному миру генетически детерминированного биосинтеза белков

со специализированными функциями (см. рис. 2). Более того, неэнзиматическая рекомбинация олигонуклеотидов, комплементарно связывающихся с полинуклеотидной матрицей, могла обеспечить сшивание (сплайсинг) фрагментов, комплементарных этой матрице, в единую цепь. Именно таким способом, а не катализируемой полимеризацией мононуклеотидов, могло осуществляться первичные копирование (размножение) РНК. Разумеется, если появлялись рибозимы, обладавшие полимеразной активностью, то эффективность (точность, скорость и продуктивность) копирования на комплементарной матрице должна была значительно возрастать.

Второй принципиальный момент в моей версии состоит в том, что первичный аппарат биосинтеза белка возник на базе нескольких видов специализированных РНК до появления аппарата энзиматической (полимеразной) репликации генетического материала – РНК и ДНК. Этот первичный аппарат включал каталитически активную прорибосомную РНК, обладавшую пептидил-трансферазной активностью; набор про-тРНК, специфически связывающих аминокислоты или короткие пептиды; другую прорибосомную РНК, способную взаимодействовать одновременно с каталитической прорибосомной РНК, про-мРНК и про-тРНК (см. рис. 2). Такая система уже могла синтезировать полипептидные цепи за счет катализируемой ею реакции транспептидации. Среди прочих каталитически активных белков – первичных ферментов (энзимов) – появились и белки, катализирующие полимеризацию нуклеотидов – репликазы, или НК-полимеразы.

Впрочем, возможно, что гипотеза о древнем мире РНК как предшественнике современного живого мира так и не сможет получить достаточного обоснования для преодоления основной трудности - научно правдоподобного описания механизма перехода от РНК и ее репликации к биосинтезу белка. Имеется привлекательная и детально продуманная альтернативная гипотеза А.Д. Альтштейна (Институт биологии гена РАН), в которой постулируется, что репликация генетического материала и его трансляция – синтез белка – возникали и эволюционировали одновременно и сопряженно, начиная с взаимодействия абиогенно синтезирующихся олигонуклеотидов и аминоацил-нуклеотидилатов – смешанных ангидридов аминокислот и нуклеотидов [2].


Заключение

Как видим, теория РНК-мира пока полна противоречий и неясностей. Однако, учитывая все сложности на пути синтеза олигонуклеотидов можно понять Фреда Хойла, известного британского астрофизика и писателя, утверждавшего, что теория РНК-мира «столь же нелепа, как и предположение о возможности сборки «Боинга 747» ураганом, пронесшимся над мусорной свалкой».

В довершение всех проблем сторонников этой теории повергли в уныние свидетельства археологов и палеонтологов, обнаруживших остатки первых примитивных клеток в слоях, относящихся к периодам от 3,5 до 3,8 млрд лет тому назад. В то же время, считают, что жизнь не могла зародиться раньше, чем 4 млрд лет назад, так как до того времени Земля интенсивно «обстреливалась» метеоритами и кометами. По более радикальным данным, «обстрел» закончился еще позже – как раз около 3,8 млрд лет назад. Таким образом, времени для развития доклеточного мира практически не оставалось.

Чтобы как-то разрешить все противоречия, многие ученые начинают склоняться к идее, что вместо относительно сложных азотистых оснований, присущих современным нуклеиновым кислотам, их предшественницы могли использовать слегка измененные варианты молекул, более склонные к реакциям нематричного синтеза. Некоторые из них, например аминогуанозин, способны без помощи ферментов объединяться в цепочки длиной до 20 нуклеотидов, что недостижимо при использовании обычного гуанозина. Более того, прототипы современных азотистых оснований могли быть и вовсе не циклическими молекулами, что упростило бы их синтез, взаимодействие с рибозой, а также, возможно, снизило бы их способность к угнетению первых появившихся «проторибозимов».

Существуют также экспериментальные данные о том, что древние проторибозимы могли состоять не из четырех, а всего из двух типов нуклеотидов, что значительно повысило бы вероятность их спонтанного образования и, следовательно, сократило бы время, необходимое для перехода доклеточного мира в клеточный.


Несмотря на высокую популярность идеи РНК-мира, сторонники белковой теории также не сдают свои позиции. Модифицировав представления Опарина, они утверждают, что короткие цепи из аминокислот (олигопептиды) могли синтезироваться с помощью РНК уже на ранних этапах РНК-мира. При этом такие олигопептиды могли принимать участие в катализе или защите и концентрировании первых рибозимов (например, путем упаковки их внутрь коацерватов). На практике было также показано, что пептидная цепь может служить заменителем сахарофосфатного остова в нуклеиновых кислотах. Подобные гипотезы намечают возможный способ перехода от мира РНК к миру белков и далее, к протоклеточной эволюции.

Еще одна интересная и перспективная гипотеза состоит в том, что жизнь зарождалась вблизи выбросов горячих вулканических вод, где из-за температуры и наличия больших концентраций биогенных молекул реакции образования биомолекул могли происходить с более высокой скоростью.

Кроме того, большие перепады температуры могли облегчать процессы матричного синтеза нуклеиновых кислот. Высокие температуры способствовали распаду двухнитчатых нуклеиновых кислот на однонитчатые, на которых при понижении температуры мог происходить следующий цикл синтеза. Такой сценарий напоминает разработанную в середине 80-х годов прошлого века технологию многократного копирования нуклеиновых кислот, названную полимеразной цепной реакцией (ПЦР). Возможно, человек просто повторил то, что Природа изобрела миллиарды лет назад?

Сейчас господствующей остается гипотеза более позднего возникновения ДНК, которая вытеснила РНК, зарекомендовав себя более надежным хранилищем генетической информации. Однако самые последние исследования показывают, что однонитчатая ДНК может служить даже лучшим ферментом, чем РНК. При этом, как мы уже знаем, ДНК гораздо более устойчива во внешней среде, что дает ей немалое преимущество. Кто знает, может быть, через несколько витков двойной спирали истории ДНК-мир, отвергнутый после открытия рибозимов, вновь отвоюет свои позиции.


По мере накопления знаний и развития методов исследования современные гипотезы и теории будут сменяться более правдоподобными и обоснованными. Однако на данном этапе развития науки кажется маловероятным, чтобы человечество смогло когда-либо окончательно разрешить эту тайну тайн [5].


Список использованной литературы


  1. А.В. Власов, В.В. Власов. Жизнь начиналась с РНК // Наука из первых рук – 2004. – Том 3, № 2. – с. 6-19

  2. А.С. Спирин. Биосинтез белков, мир РНК и происхождение жизни // Вестник Российской Академии наук. – 2001. – Том 71, №4. – с. 320-328

  3. А.С. Спирин. Рибонуклеиновые кислоты как центральное звено живой материи // Вестник Российской Академии наук. – 2003. – Том 73, № 2. – с. 117-127

  4. М.С. Крицкий, Т.А. Телегина. Коферменты и эволюция мира РНК // Успехи биологической химии. – 2004. – т. 44. – с. 341-364

  5. С. Григорович. Вначале была РНК? В поисках молекулы первожизни // Наука и жизнь. – 2004. – №2