reforef.ru 1
Курс лекции по предмету:

«МИКРОБИОЛОГИЯ»

ЛЕКЦИЯ № 1


Предмет микробиологии и краткие сведения о ее развитии
Микробиология является наукой, изучающей строение и жизнедеятельность микроорганизмов, или микробов. Название «микробиология» происходит от греческих слов: микрос - ма­лый и биос - жизнь.

Большинство микроорганизмов можно увидеть только с по­мощью микроскопа. К микроорганизмам относятся бактерии, ультрамикробы, грибки, дрожжи и некоторые другие орга­низмы. Микроорганизмы отличаются простым строением и со­стоят чаще всего из одной клетки.

Бактерии, плесневые грибки и дрожжи относятся к низшим растительным организмам. Из всех микробов они имеют наи­большее значение для товароведения. Ультрамикробы состав­ляют особую группу организмов, характеризующуюся чрезвы­чайно малыми размерами по сравнению с другими микробами.

Микроорганизмы распространены повсюду - в воздухе, воде, почве, во всех зонах земного шара, независимо от клима­тических условий. Они населяют окружающие нас предметы, находятся на пищевых продуктах, на одежде, на поверхности нашего тела и внутри организма.

Повсеместное распространение микробов объясняется их легкой приспособляемостью к условиям обитания, большой вы­носливостью при колебаниях температуры и влажности среды, способностью к необычайно быстрому размножению.

Микроорганизмы обладают свойством воздействовать на окружающую их среду и вызывать в ней различные биохими­ческие превращения. Это давно подмечено человеком и исполь­зуется им в практической деятельности.

Находясь в почве, микробы в результате своей жизнедея­тельности способны восстанавливать ее плодородие. Современ­ная сельскохозяйственная наука отводит важное место микроорганизмам в почвообразовательных процессах и в повышении урожайности сельскохозяйственных культур.

Большое значение имеют микроорганизмы в производстве продовольственных товаров. С помощью дрожжей, например, получают тесто для хлеба, спирт, вино, пиво, брагу и другие продукты. Особую группу бактерий используют для получения молочнокислых продуктов: сметаны, творога, ацидофилина, простокваши и других. Эти же бактерии, называемые молочно­кислыми, участвуют в процессах созревания сыров, а также квашения капусты. Кефир и кумыс получают совместным дей­ствием дрожжей и молочнокислых бактерий.


Промышленное получение уксусной, молочной, масляной, ли­монной и других кислот также основано на применении опре­деленных микроорганизмов.

Микроорганизмы используются для производства витаминов, ферментов и аминокислот. В настоящее время с помощью ми­кробов получают очень ценные лечебные препараты - пеницил­лин, стрептомицин, биомицин и др.

Человек в производстве различных товаров научился созна­тельно регулировать жизнедеятельность полезных микроорга­низмов и направлять ее в нужное русло. Дальнейший успех практического использования микроорганизмов зависит от глу­бины познания их свойств и особенностей вызываемых ими про­цессов.

Велика положительная роль микроорганизмов. Однако мно­гие из них наносят существенный ущерб, вызывая порчу и раз­рушение различных товаров.

Особенно легко поддаются воздействию микроорганизмов продовольственные товары. Поэтому в производстве многих из этих товаров усилия человека направлены на то, чтобы предотвратить или задержать развитие вредных микроорга­низмов.

Одной из важнейших задач для товароведов продовольственных товаров является обеспечение определенных условий их хране­ния и перевозки, которые позволили бы уберечь товары от воз­действия микробов и тем самым сохранить их качество.

Как во время производства, так и при хранении и перевозке товаров человек постоянно ведет борьбу с микроорганиз­мами посредством охлаждения, замораживания или, наоборот, нагреванием продукта до высоких температур, а также путем консервирования с помощью различных химических веществ и т. д. Разработка и применение всех этих процессов основаны на знании микробиологии.

Многие биохимические превращения, протекающие в пище­вых продуктах - овощах, мясе, рыбе, молоке и т. д. - и являющиеся следствием жизнедеятельности микроорганизмов, невоз­можно должным образом осмыслить без знания микробиологии. Ознакомление с микробиологией позволяет работникам тор­говли широко и сознательно проводить профилактические меро­приятия против распространения пищевых инфекций и отрав­лений.


Следовательно, микробиология тесно связана с товароведе­нием продовольственных товаров, поэтому специалисту-товаро­веду в своей практической деятельности постоянно приходится пользоваться данными микробиологии.

Современная микробиология включает ряд специализиро­ванных отделов, являющихся фактически самостоятельными дисциплинами. В процессе развития микробиологии из нее вы­делились медицинская и ветеринарная, сельскохозяйственная и техническая микробиология.

Для товароведения наибольшее значение имеет техническая микробиология, которая изучает хозяйственно полезных и вред­ных микроорганизмов, их влияние на продукты в процессе про­изводства, хранения и транспортирования. Поэтому в учебнике освещаются вопросы, связанные главным образом с техниче­ской микробиологией.

Начиная с Аристотеля (384-322 до н. э.), которому принадлежит первая попытка систематизировать накопленные к тому времени сведения об организмах, биологи делили живой мир на два царства - растений и животных. А. Ван Левенгук, открывший мир микроскопических живых существ, был убежден в том, что они являются «маленькими живыми зверушками». С этого времени и до XIX в. все открываемые микроорганизмы рассматривали как мельчайшие существа животной природы.

Микробиология возникла в конце XVII в. в связи с работами голландского естествоиспытателя Антония Левенгука (1632-1723 гг.). Левенгук одним из первых обнаружил живые микро­скопические существа с помощью изготовленных им линз. Система этих линз (микроскоп) давала увеличение всего в 160 раз. Левенгук наблюдал микроорганизмы в различных на­стоях, в зубном налете, дождевой и колодезной воде, мясе и других предметах. Свои наблюдения он обстоятельно изложил в книге «Тайны природы, открытые Антонием Левенгуком» (1695 г.). В своей книге Левенгук сообщал, что обнаружил мельчайших «живых зверьков». Некоторые из них, по его выра­жению, оживленно двигались, «как щуки в воде». Он зарисовал виденные им микроорганизмы. Книга Левенгука послужила на­чалом для дальнейшего развития микробиологии.


И хотя увидеть микробы удалось только во второй половине XVII столетия, некоторые процессы, вызываемые микроорга­низмами, были известны человеку с глубокой древности. Уже с давних пор человек наблюдал скисание молока, приготовлял виноградные вина и выпекал хлеб из кислого (перебродившего) теста. С незапамятных времен из поколения в поколение пере­давался секрет приготовления кумыса и кефира. Человек в те­чение многих столетий использовал микробиологические про­цессы, не подозревая о существовании вызывающих их возбу­дителей. В течение первого периода (до второй половины XIX в.) своего развития микробиология носила в основном описатель­ный характер, ее исследования сводились только к изучению внешней формы микроорганизмов.

Во второй половине XIX в. немецкий биолог Э. Геккель (Е. Haeckel, 1834-1919 гг.) приходит к заключению, что микроорганизмы настолько существенно отличаются как от царства животных, так и от царства растений, что не укладываются ни в одно из этих подразделений. Э. Геккель предложил выделить все микроорганизмы, у которых отсутствует дифференцировка на органы и ткани (простейшие, водоросли, грибы, бактерии), в отдельное царство Protista (протисты, первосущества), включив в него организмы, во многих отношениях занимающие промежуточное положение между растениями и животными. Термин «protista» и сейчас применим для обозначения объектов, исследуемых микробиологами.

Подлинный расцвет микробиологии связан с работами фран­цузского ученого Луи Пастера (1822-1895 гг.). Своими заме­чательными исследованиями процессов брожения и причин возникновения заразных болезней Пастер убедительно показал огромную роль микроорганизмов в природе и в жизни человека. Его исследования имели неоценимое практическое значение. Они основывались на глубоком знании физиологии микроорга­низмов.

До Пастера считали, что спиртовое брожение, а также гние­ние являются обычными химическими процессами. Пастер же установил и доказал, что спиртовое брожение и гниение - ре­зультаты жизнедеятельности микроорганизмов.


Учение Пастера о процессах брожения и гниения сыграло важную роль в разработке бродильной технологии и методов хранения пищевых продуктов. Его именем назван один из рас­пространенных способов консервирования продовольственных товаров - пастеризация.

Пастер доказал, вопреки господствовавшей в то время тео­рии самопроизвольного зарождения, что живые организмы не могут зарождаться из неживой материи. Его современники по­лагали, будто из гниющих веществ растений зарождаются гу­сеницы, из морского ила - угри, из гнилого мяса - черви и т.д. Считалось, что и микроорганизмы зарождаются самопроиз­вольно.

Однако Пастер неопровержимыми опытами установил, что зародыши микробов всюду носятся в воздухе и оттуда попадают в различные среды, вызывая их гниение. Отрицательное реше­ние вопроса о возможности самопроизвольного зарождения явилось важным вкладом в материалистическое учение о проис­хождении жизни на земле.

Выяснив природу заразных болезней человека, Пастер уста­новил, что эти болезни во всех случаях возникают вследствие заражения определенными микроорганизмами, и предложил методы предохранения человека и животных от заразных бо­лезней. Он изготовил и практически использовал вакцины про­тив сибирской язвы и бешенства. Применение вакцин сыграло огромную роль в борьбе с этими опасными болезнями. Впослед­ствии на основе работ Пастера были найдены эффективные средства борьбы со многими инфекционными заболеваниями человека и животных. Пастер своими смелыми исследованиями превратил описа­тельную микробиологию в подлинную науку, имеющую огром­ное практическое значение и целиком поставленную на службу человеку.

Значительный вклад в развитие микробиологии внес немец­кий ученый Роберт Кох (1843-1910 гг.). Ему принадлежит открытие возбудителей туберкулеза, холеры и других заболе­ваний. Кох разработал имеющую большое практическое значе­ние методику выделения и выращивания чистых культур микро­организмов с помощью твердых питательных сред. Эта методика сыграла важную роль в дальнейшем развитии микробиологии. Она позволила микробиологам простым приемом отделять и изолировать нужный вид микроорганизмов от других видов, с которыми он обычно встречается в природных условиях.


Важный вклад в микробиологию внесли отечественные ученые.

Особенно большие заслуги в развитии современной микро­биологии принадлежат русскому ученому Илье Ильичу Мечни­кову (1845-1916 гг.).

Он разработал всемирно известную фагоцитарную теорию борьбы человеческого и животного организма с проникшими в него болезнетворными бактериями и создал учение об иммуни­тете - невосприимчивости организма к заразным болезням. Ему принадлежит теория об антагонизме между различными группами бактерий. Эта теория послужила началом современ­ного учения об антибиотиках, получившего сейчас исключи­тельно широкое развитие.

И. И. Мечников создал первую в России бактериологиче­скую лабораторию Одессе.

Выдающееся значение для развития отечественной микро­биологии имеют работы Н. Ф. Гамалея (1859-1949 гг.), бли­жайшего сотрудника И. И. Мечникова по Одесской бактериологической лаборатории, впоследствии почетного академика. Он открыл явление лизиса (растворения) бактерий под действием других, еще более мелких микроорганизмов. Это открытие яви­лось началом развития новой отрасли в микробиологии - бакте­риофагии. Гамалея организовал в Одессе вторую в мире (пер­вая была в Париже) Пастеровскую станцию по прививкам против бешенства. Гамалея многое сделал в области улучше­ния здравоохранения в нашей стране.

Важную роль в развитии микробиологии сыграли труды Д. И. Ивановского (1864-1920 гг.). Им создан новый раздел микробиологии - вирусология, приобретающий все большее значение. Исследуя мозаичную болезнь табака, Ивановский первый обнаружил существование вирусов, размеры которых настолько ничтожны, что их невозможно увидеть в оптические микроскопы.

Значительны заслуги Ивановского и в области сельскохозяй­ственной микробиологии. Будучи ботаником, микробиологом и физиологом растений, Ивановский впервые дал систематиче­ское изложение почвенной микробиологии в своем докладе «Из деятельности микроорганизмов в почве».

Сельскохозяйственная микробиология существенно обогатилась работами микробиологов С. Н. Виноградского (1856-1953 гг.) и его последователя В. Л. Омелянского (1867-1928 гг.).

Виноградский своими исследованиями показал, что некото­рые микроорганизмы (нитрифицирующие бактерии) способны усваивать углекислый газ из воздуха без участия хлорофилла и солнечной энергии. Это явление, в отличие от фотосинтеза зеле­ных растений, было названо хемосинтезом.

Позднее Виноградский открыл имеющий важное значение процесс использования атмосферного азота анаэробными бак­териями.

В. Л. Омелянский сделал целый ряд ценных открытий в области сельскохозяйственной микробиологии. Важной заслу­гой его является также написание одного из лучших учебников по общей микробиологии, изданного в 1909 г. под названием «Основы микробиологии».

В развитии технической микробиологии в СССР большую роль сыграли исследования С. П. Костычева, С. Л. Иванова, А. И. Лебедева в области спиртового брожения. Костычев изу­чал также вопросы других видов брожения - молочнокислого, маслянокислого и производства лимонной кислоты с помощью плесневых грибков.

Работы советских микробиологов В. Н. Шапошникова и А. Я. Мантейфель обеспечили получение молочной кислоты с помощью микроорганизмов из продуктов гидролиза крахмала и мелассы.

Важный вклад в развитие микробиологии молока и молоч­ных продуктов внес А. Ф. Войткевич (1875-1950 гг.). Ценны работы в этом же направлении С. А. Королева (1876-1932 гг.), проводившиеся в Вологодском молочном институте.

Техническая (пищевая) микробиология, непосредственно связанная с товароведением, создана Я. Я. Никитинским (1878-1941 гг.). Он в течение многих лет преподавал этот курс в Московском институте народного хозяйства им. В. Г. Плеха­нова студентам, изучавшим товароведение. В настоящее время все большее значение приобретает использование микробиологических процессов в производстве пищевых продуктов, витаминов, ферментов и т. д.

В настоящее время нет единства во взглядах на общую систему живого мира. Согласно одной из точек зрения попытки уложить все существующее разнообразие организмов в жесткую схему нецелесообразны, поскольку любые искусственные разграничения нарушают естественные связи между организмами. Следствие этого - тенденция наименьшего дробления органического мира, признание целесообразности выделения только двух царств: Plantae (растения) и Animalia (животные). Эта точка зрения акцентирует внимание на чертах сходства, соединяющих различные типы организмов, и на существовании переходов от одной группы организмов к другой в процессе эволюции. В соответствии с противоположным представлением разделение всех живых форм на крупные таксоны (царства) наиболее полно отражает существующее многообразие типов жизни, подчеркивая эту сторону живого мира. Согласно первой точке зрения все микроорганизмы рассматриваются как примитивные растения или животные и соответственно входят в состав царств Plantae или Animalia. Согласно второй - микроорганизмы могут претендовать на уникальное место в иерархии живых форм, что впервые понял Э. Геккель. Дальнейшее изучение геккелевских «первосуществ» выявило неоднородность этой группы. Тогда же стало ясно, что понятие «микроорганизм» не имеет таксономического смысла. Оно объединяет организмы по признаку их малых (как правило, видимых только с помощью соответствующих приборов) размеров и связанных с этим специфических методов изучения. Данные о различии в строении клеток микроорганизмов, входящих в группу Protista, начали накапливаться с конца XIX в. Это повлекло за собой деление группы на высшие и низшие протисты. К высшим протистам стали относить микроскопических животных (простейших), микроскопические водоросли (кроме сине-зеленых) и микроскопические грибы (плесени, дрожжи), к низшим - все бактерии и сине-зеленые водоросли (последние чаще называют теперь цианобактериями). Деление на высшие и низшие протисты происходило в соответствии с двумя выявленными типами клеточной организации - эукариотной и прокариотной. Высшие протисты имеют эукариотное строение клеток, т. е. являются эукариотами, низшие - прокариотное. Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (R. Stanier, 1916-1982 гг.) и К. ван Ниля, относящимися к 60-м гг. Поясним разницу между прокариотами и эукариотами. Клетка - это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру: два электронно-плотных слоя каждый толщиной 2,5-3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, - непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ - единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках, в отличие от прокариотных, есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость. Наружные мембраны хлоропластов и митохондрий, окружающие заключенные в них функционально специализированные мембраны, играют аналогичную роль. Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрий, хлоропласты - это клеточные органеллы. В эукариотных клетках помимо перечисленных выше есть и другие органеллы. В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной. В цитоплазме находятся функционально специализированные структуры, но они не изолированы от цитоплазмы с помощью мембран и, следовательно, не образуют замкнутых полостей. Эти структуры могут быть сформированы и мембранами, но последние не замкнуты и, как правило, обнаруживают тесную связь с ЦПМ, являясь результатом ее локального внутриклеточного разрастания. В клетках прокариот есть также образования, окруженные особой мембраной, имеющей иное по сравнению с элементарной строение и химический состав. Таким образом, основное различие между двумя типами клеток - существование в эукариотной клетке вторичных полостей, сформированных с участием элементарных мембран. В связи с тем, что прокариотная и эукариотная организация клеток принципиально различна, было предложено только на основании этого признака выделить все прокариоты в особое царство. Р. Меррей (R. Murray) в 1968 г. предложил все клеточные организмы разделить на две группы по типу их клеточной организации: царство Prokaryotae, куда вошли все организмы с прокариотным строением клетки, царство Eukaryotae, куда включены все высшие протисты, растения и животные. Р. Виттэкер (R. Whittaker) предложил схему, по которой все живые организмы, имеющие клеточное строение, представлены разделенными на пять царств (рис. 1). Такая система классификации живого мира отражает три основных уровня его клеточной организации: Monera включает прокариотные организмы, находящиеся на самом примитивном уровне клеточной организации; Protista - микроскопические, в большинстве своем одноклеточные, недифференцированные формы жизни, сформировавшиеся в результате качественного скачка в процессе эволюции, приведшего к возникновению эукариотных клеток; многоклеточные эукариоты представлены в свою очередь тремя царствами Plantae, Fungi и Animalia.



Рис. 1. Схема пяти царств живого мира: прокариоты (царство Monera), одноклеточные эукариоты (царство Protista), многоклеточные эукариоты (царства Plantae, Fungi, Animalia) (no Whittaker, 1969)


Три последние таксономические группы различаются по способу питания: фототрофный тип питания за счет процесса фотосинтеза характерен для растений (Plantae): грибы (Fungi) в основном характеризуются осмотрофным типом питания, т. е. питанием растворенными органическими веществами; животные (Animalia) осуществляют голозойное питание, заключающееся в захватывании и переваривании твердой пищи. Способы питания, специфические для растений и грибов, возникли в процессе эволюции на уровне Monera. На уровне Protista они получили свое дальнейшее развитие; здесь же сформировался третий тип питания - голозойный. Не берясь судить о целесообразности деления живой природы на пять или шесть царств, можно с определенностью утверждать, что обособление прокариотных микроорганизмов в отдельное царство Prokaryotae правомерно, поскольку основано на принципиальных различиях в структуре прокариотных и эукариотных клеток, т. е. тех единиц, из которых построены все клеточные формы жизни. Достижения современной микробиологии, основанные на развитии других наук - физики, химии, биологии, биохимии, - находят применение во все новых и новых сферах хозяйствен­ной деятельности человека.
Значение микроорганизмов в природе и народном хозяйстве
Из всех функций на Земле важное значение микроорганизмов в том, что они участвуют в круговороте веществ в природе, в особенности углерода.

Микроорганизмы участвуют в образовании полезных ископаемых, а также в их добычи.

Микроорганизмы вызывают заболевания человека, животных и растений. Портят пищевые продукты, строительные материалы, вызывает коррозию металлов.


Микробы разрушают: гранит, древесину и др. материалы. Есть в природе парадокс, чем меньше живой организм, тем он продуктивней.

Микроорганизмы широко используется в различных отраслях народного хозяйства. С помощью микробов получают белки, жиры, углеводы, органические кислоты, ферменты, витамины, антибиотики и другие ценные вещества.

Микроорганизмы широко используются и пищевой промышленности. С помощью микробов получают хлеб и хлебопродукты, квас, вино, пиво, различные молочные продукты, колбасы и т.д.

Очень хорошо используется в сельском хозяйстве для получения высоких урожаев сельхоз культур и животноводстве.

Лекция № 2

Строение и классификация микроорганизмов.

Бактерии
Бактерии составляют обширную группу микроорганизмов. В настоящее время известно более 2400 видов бактерии.

Форма бактерий

Они бывают различной формы - шаровид­ной, палочковидной и извитой.

Шаровидные бактерии носят общее название - кокки. Встречаются они в виде одиночных клеток - микрококки, соединенных попарно - Диплококки, по четыре - тетракокки, в виде цепочек - стрептококки; иногда кокки составляют группировки в виде одиночных пакетов по восемь клеток или из нескольких пакетов - сардины. Они образуют также скопления, напоми­нающие виноградные грозди, - стафилококки.

Палочковидные бактерии имеют форму одиночных, соеди­ненных попарно или цепочкой палочек. Соотношение между длиной и толщиной палочек может быть различным.

Извитые (изогнутые) бактерии различаются не только по длине и толщине, но и по степени извитости (изогнутости). Па­лочки, изогнутые в виде запятой, называются вибрионами; па­лочки с одним или несколькими завитками - спириллами; длинные палочки с множеством завитков - спирохетами.

Размеры большинства бактерий колеблются в пределах 0,5-5 микронов. Микрон равен одной тысячной доле милли­метра и обозначается буквой греческого алфавита ц (ми).


Столь незначительные размеры бактерий не позволяют ви­деть их невооруженным глазом. При изучении бактерий, как и других микроорганизмов, исследователи пользуются микроско­пом. Современный оптический микроскоп позволяет вести наблюдения при увеличении в 1000 и более раз.

Форма бактериальной клетки и ее размеры не являются по­стоянными. Они могут изменяться в зависимости от условий обитания микроба, а также от возраста микробной клетки.

При неблагоприятных условиях среды бактериальная клет­ка может принять резко измененную, уродливую форму. Для выяснения типичных форм и размеров того или иного предста­вителя бактерий создают определенные условия выращивания.

Строение бактерий

Бактериальная клетка состоит из про­топлазмы, ядра (ядерного вещества) и оболочки. Ядро может быть обособленным от протоплазмы или распределенным в ней в виде ядерного вещества.

Протоплазма представляет полужидкую прозрачную живую массу очень сложного химического состава. Она находится в коллоидном состоянии и содержит воду, белки, жиры, мине­ральные вещества и ферменты. Протоплазма у молодых бакте­рий заполняет всю клетку. В протоплазме же старых клеток появляются полости (вакуоли), заполненные клеточным соком (водным раствором органических и минеральных веществ).

Помимо обычных веществ в протоплазме могут быть различ­ные включения - жир, углеводы и другие химические соедине­ния, являющиеся запасным питательным материалом.

В клетках некоторых бактерий содержатся красящие веще­ства (пигменты).

Прилегающий к оболочке слой протоплазмы является более уплотненным, чем остальная масса протоплазмы. Этот слой полупроницаем и играет важную роль в обмене веществ между бактериальной клеткой и средой.

Протоплазма очень чувствительна к внешним воздействиям. Она необратимо свертывается уже при температуре выше 60°С, на нее губительно действуют кислотность или щелочность среды, а также ядовитые вещества. Протоплазма способна те­рять воду, т. е. обезвоживаться и, наоборот, впитывать воду – набухать. Большая потеря воды также вызывает свертывание протоплазмы.


Ядро большинства бактерий не обособлено от протоплазмы. Ядерное вещество диффузно распределено внутри клетки. Только у некоторых более сложных форм бактерий имеется от­дельно образованное ядро. Настоящие бактерии имеют диффуз­ное ядро.

Оболочка придает определенную форму бактериальной клетке, защищает ее от неблагоприятных воздействий и уча­ствует в обмене веществ клетки. Оболочка состоит из азоти­стых соединений и углеводов, близких к крахмалу и гемицеллюлозе. Под микроскопом оболочку рассмотреть обычно не удает­ся. Требуется специальная обработка, чтобы можно было ее увидеть. Молодые клетки имеют тонкую и эластичную оболочку, которая при старении уплотняется и теряет эластичность.

Оболочка некоторых бактерий способна ослизняться. Сте­пень ослизнения может зависеть от условий внешней среды. Слизеобразующие бактерии иногда превращают жидкие среды в сплошную слизистую массу. Такое слизеобразование иногда происходит в сахаристых экстрактах при производстве са­хара.

Ослизнению подвергаются также многие пищевые продук­ты - мясо, колбасные изделия, рыбопродукты, молочные про­дукты, квашеные овощи и т. д., что может причинить большие убытки.

В некоторых случаях слизеобразующие бактерии играют по­ложительную роль. Так, в производстве ацидофилина исполь­зуется слизеобразующая бактерия, придающая этому продукту характерную тягучую консистенцию.

Движение
бактерий

Среди бактерий встречаются подвиж­ные и неподвижные формы. Движение бактерий происходит обычно при помощи так называемых жгутиков. Некоторые из­витые бактерии, не имеющие жгутиков, передвигаются путем изгибания тела. Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Жгутики состоят из белка - флагеллина (от flagellum – жгутик).

Расположение жгутиков на теле бактерии может быть раз­личным: один жгутик на конце тела (бактерии-монотрихи), пучок жгутиков на конце тела (бактерии-лофотрихи), жгутики расположены по всей поверхности тела (бактерии-перитрихи) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Характер движения определяется характером жгутования. Бактерии с полярно расположенными жгутиками движутся по прямой, только иногда делая отклонения в сторону в виде лег­ких колебательных движений. Движение бактерий, имеющих жгутики по всему телу, носит беспорядочный характер, проис­ходит в виде оживленного кувыркания.

Скорость перемещения у разных бактерий различна. Наибо­лее подвижным считается холерный вибрион, который за 1 се­кунду проходит расстояние, в 15 раз превышающее длину его тела. Большая же часть бактерий за 1 секунду перемещается на расстояние, близкое длине их тела. На подвижность бактерий очень сильное влияние оказы­вают условия внешней среды.
Размножение
бактерий

Размножение бактерий происходит путем деления клетки пополам. Перегородка, образующаяся при делении вегетативной клетки, у шаровидных бактерий мо­жет проходить по любому из диаметров клетки; у палочковид­ных и извитых бактерий перегородка делит тело поперек; деле­ние спирохет может происходить вдоль тела бактерии.

Скорость деления бактериальной клетки при благоприятных условиях очень велика и составляет около 30 минут. Вновь образовавшиеся из одной две клетки через следующие 30 ми­нут, в свою очередь, образуют четыре клетки и т. д. Если бы все бактерии остались живыми, то через сутки они сплош­ным слоем покрыли бы весь земной шар. Однако этого не про­исходит, поскольку большая часть бактерий погибает вследствие неблагоприятных условий внешней среды: недостатка питания и влаги, колебаний температуры. И все же нет такого места на земле, нет такого предмета, которые оказались бы не обсемененными различными бактериями. Несмотря на массовую гибель бактерий, незначительная часть их, сохранившись, при благоприятных условиях вновь создает чудовищное по своему количеству потомство. Стоит бактериям попасть на пищевые продукты, которые являются для них питательной средой, как вскоре эти продукты окажутся испорченными вследствие массо­вого размножения на них микроорганизмов. Поэтому очень важно при переработке и хранении пищевых продуктов создать такие условия, которые оказались бы неблагоприятными для бактерий и предотвратили их массовое размножение. С этой целью применяют низкие и высокие температуры, высушивание, (удаление влаги из продукта) и ряд других факторов, неблаго­приятно действующих на бактерии.


Спорообразование
бактерий

Споры – своебразная форма покоящихся фирмикутных бактерий, т. е. бактерий с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium – веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Многие палочковидные бакте­рии способны образовывать в определенных условиях споры. Такие бактерии, в отличие от всех остальных, называются ба­циллами.

Форма спор может быть овальной, шаровидной; расположение в клетке – терминальное, т. е. на конце палочки (у возбудителя столбняка), субтерминальное – ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы).

Размеры спор, как правило, меньше размеров ве­гетативных клеток. В некото­рых случаях, однако, диаметр споры может превышать диа­метр вегетативной клетки, вследствие чего форма самой клетки при спорообразовании изменяется. Когда спора образуется в центре клетки, то эта клетка по форме напоминает веретено (клостридиум); в случае образования споры в конце клетки она приобретает форму ба­рабанной палочки (плектридиум).

Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.


Спорообразование как свойство бактерий (бацилл) с точки зрения переработки и хранения пищевых продуктов является крайне нежелательным, так как затрудняет и усложняет борьбу с этими микроорганизмами. Чтобы уничтожить споры, например, в консервах, их приходится стерилизовать, т. е. подвер­гать нагреванию до температуры 120°С, а такой нагрев отрица­тельно сказывается на качестве консервированных продуктов. Стерилизация молока существенно изменяет его первоначаль­ные свойства, приводит к потере витаминов. А если молоко не нагревать до такой высокой температуры, то его невозможно будет долго сохранить. Так, пастеризованное молоко, которое нагревается только до температуры 80-90°С с целью сохранения питательных веществ, портится при комнатной температуре очень быстро, потому что в процессе пастеризации уничтожают­ся лишь вегетативные формы микробов, а споры не погибают. В нагретом до комнатной температуры молоке они прорастают и быстро размножаются, вызывая порчу этого продукта.

Свойством образовывать споры обладают многие бациллы, вызывающие опасные заразные болезни, а также отравления. К их числу относятся, например, бациллы сибирской язвы и бациллы ботулизма.

Систематика бактерий

Бактерии составляют определенную группу микроорганиз­мов, однако у них имеются признаки, сближающие их с низ­шими грибами и с низшими водорослями, а спирально извитые бактерии (спирохеты) стоят ближе к низшим животным орга­низмам. Поэтому предполагается, что различные группы бакте­рий имеют неодинаковое происхождение, хотя их принято отно­сить к растительным организмам.

Систематика (классификация) бактерий весьма затруднительна. Объясняется это очень малыми и к тому же непостоян­ными размерами бактерий, простотой их форм и отсутствием резко выраженных внешних признаков, которые помогли бы установить четкие границы между различными представителями бактерий. Поэтому единой, общепринятой системы подразделе­ния бактерий не существует. В настоящее время имеется не­сколько классификаций (и у нас и за рубежом), основанных на учете различных внешних и физиологических признаков бактерий, а также их родственных связей с другими организ­мами.


Одна из систематик делит бактерии на два порядка - шизомицеты (дробящиеся грибки) и актиномицеты (лучистые грибки), внутри которых различают семейства и роды. В основу деления на семейства взята внешняя форма бактерий и способ­ность их к спорообразованию, а в основу деления на роды - положение перегородки при делении клетки и степень изви­тости клетки. Ниже рассматривается эта систематика с некоторыми изме­нениями и добавлением порядка миксобактерии.
Порядок шизомицеты

Шизомицеты подразделяют на шесть семейств: кокки, бактерии, спириллы, спирохеты, десмобактерии и бациллы.

Семейство кокки объединяет шаровидные бактерии - кокки. Они имеют форму шара, подвижность и спорообразование у них наблюдается очень редко. Это семейство включает три рода, насчитывающие более 300 видов:


  • стрептококки размножаются путем деления клеток всегда в одной плоскости и образуют цепочки из двух и более клеток;

  • сарцины размножаются путем деления последовательно в трех взаимно перпендикулярных плоскостях и образуют пакеты из восьми сросшихся клеток;

  • микрококки размножаются путем деления в разных плоско­стях, поэтому встречаются в виде одиночных клеток (микро­кокки), соединенных по четыре клетки (тетракокки) или целых скоплений клеток (стафилококки).

Семейство бактерии включает один род - собственно бакте­рии, объединяющие более 300 видов. Этот род представлен неспорообразующими палочковидными подвижными и непо­движными клетками.

Собственно бактерии встречаются в виде одиночных, а также соединенных попарно и цепочками палочек.

Как видно, термин «бактерии» имеет в микробиологии двоя­кое значение. В широком смысле он означает целую опреде­ленную группу микроорганизмов, а в узком смысле исполь­зуется для наименования не образующих спор палочковидных бактерий.

Семейство спириллы состоит из двух родов спирально изви­тых и изогнутых палочек, не образующих спор:


  • вибрионы характеризуются короткими, слабо изогнутыми клетками, напоминающими запятую. Движение вибрионов осу­ществляется преимущественно за счет одного полярного жгу­тика;

  • спириллы имеют длинные и сильно изогнутые клетки, напо­минающие спираль или штопор. Часто они бывают снабжены пучком полярных жгутиков.

Семейство спирохеты подразделяют на несколько родов - спирохеты, лептоспиры и др.

Представители этого семейства имеют очень длинные и тон­кие клетки, длина которых во много раз превышает толщину. Клетки многократно изогнуты, наподобие длинной спирали. К этому семейству относятся главным образом болезнетворные бактерии, например, возбудители сифилиса, возвратного тифа и др.

Семейство десмобактерии включает несколько родов нитча­тых бактерий, характеризующихся многоклеточным строением и особым способом размножения - с помощью специальных клеток, называемых гонидиями.

Гонидии развиваются из концевых клеток нити; образовав­шиеся гонидии, попав в субстрат, прорастают в новые нити. В пределах самой нити клетки размножаются поперечным де­лением. Среди нитчатых бактерий бывают подвижные и неподвиж­ные формы. Движение нитчатых бактерий осуществляется изги­банием тела, жгутиков они не имеют.

Из десмобактерии важное значение имеют железобактерии и серобактерии, принимающие деятельное участие в превраще­ниях соединений железа и серы в природе.

Семейство бациллы состоит из одного рода - бациллы. Сюда относятся подвижные и неподвижные спорообразующие палочки, которые после спороношения принимают веретено­образную форму (клостридиум) или форму барабанных пало­чек (плектридиум). Группа бацилл включает многочисленных представителей (более 500 видов). Они широко распростра­нены в природе и участвуют в превращениях азотистых и без­азотистых веществ.

Среди бацилл имеются болезнетворные формы, вызывающие опасные заболевания.